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Summary. In this study we apply the correspondence principle for free
vibrations of a homogeneous viscoelastic solid derived by Fisher and Leit-
man to obtain the torsional modes of a homogeneous viscoelastic rod.
We also extend the correspondence principle, showing that it may be
used to find the frequencies of Love waves in a stratified viscoelastic
medium. Finally, we apply the correspondence principle to four viscoe-
lastic materials: the Kelvin-Voigt solid, the Maxwell solid, the standard
linear solid, and the Achenbach-Chao solid. We show that in each of these
cases some care must be used in applying the correspondence principle
because of the presence of multiple solutions. We also examine meas-
ures of dissipation of the free vibrations, and we determine the condi-
tions under which the logarithmic decrement may be approximated by
the process-independent 1/ @ of 0'Connell and Budiansky.

1 Introduction

In this study we are concerned with some problems in viscoelastic wave pro-
pagation. Viscoelastic media are of geophysical interest because Spencer (1981)
has found that they model fully saturated porous rocks. In addition, the experi-
ments of Bonner {reported in {Thigpen ef al. 1983)) show that a partially melted
granitic rock is modelled by a viscoelastic material. An understanding of wave
propagation processes in fully or partially saturated porous materials is basic to
energy resource recovery, geothermal exploration, and resource assessment. In
addition, in solid earth geophysics the study of attenuation and dispersion of
seismic waves involves the theory of linear viscoelasticity. In particular, the
damping of the free oscillations of the earth, i. e., the quality factor & is a topic
of considerable interest. The aim of this study is to increase our understanding
of viscoelastic wave propagation with a view toward applications in the analysis
of attenuation and dispersion in geophysical materials.

For the elastic wave equation consider solutions of the form of sinusoidal
waves U(X)exp(iwef). Then the amplitude U of the displacement field satisfies a
differential equation which is formally self-adjoint {Achenbach 1975), and the
frequency w, is an eigenvalue. Thus, if the problem is on a bounded domain with
Dirichlet, Neumann, or Robin boundary conditions, the problem as a whole is
self-adjoint and the eigenvalues are real and the spectrum has no continuous
component. If, on the other hand, the domain is unbounded and the Sommer-
feld radiation condition is used on part of the boundary, then the problem as a



whole is not self-adjoint, so that the spectrum may have one or more continuous
components. Even in this case, though, the discrete spectrum is strictly real.

For wave propagation in a viscoelastic medium and sinusoidal solutions
U(x)exp(iw,t) the differential equation for the amplitude U is not formally
self-adjoint. Therefore, even on a bounded domain it remains to be investigated
whether the eigenfunctions of the viscoelastic wave operator are complete. See
(Naimark 1968, Appendix II) for a discussion of the spectral representation for a
non-self-adjoint problem in quantum mechanics. Furthermore, the discrete
eigenvalues w, need not be real. For realistic viscoelastic models in which the
time-domain creep relaxation function is strictly real, the discrete eigenvalues
appear in pairs,

Wy =+t u+ib

with £#>0 and b > 0. 1t should also be noted that for a viscoelastic wave problem
in an unbounded domain the Sommerfeld radiation condition must be recast in
terms of a projection onto the subspace of outgoing viscoelastic waves.

Starting from a known solution for the motion of an elastic material, there
are two standard methods for analyzing wave motion in a corresponding viscoe-
lastic medium. One method is by perturbation from an elastic material to a
nearby viscoelastic material. This has been done by several authors, and a care-
ful analysis of the method was given by Majda ef al. (1985), based on perturba-
tion theory for linear operators {(Kato 1966). They found that the validity of the
procedure of perturbing elastic modes to obtain viscoelastic modes is highly
model dependent. Furthermore, the size of perturbation permitted depends on
the frequency and is limited by the distances separating modes. Other than the
need to keep eigenvalues separated, the method gives no insight into the rea-
sons for the restrictions.

The other method of analysis is based on the correspondence principle of
Fisher & Leitman (1966). This principle says that for simple free vibrations of a
homogeneous medium the displacement field U{x)exp(iw,t) of a viscoelastic
solid is related to the elastic displacement field U(x)exp(iw,t) according to the
conditions that the viscoelastic vibration frequency w, and the corresponding
elastic frequency w, be related by the condition

w _ K
o K (1.1)

where K, is the complex wave velocity and K, is the corresponding real elastic
wave velocity. That is, in terms of the elastic modulus M; and the density p, we
have K, =~/M,/ p. The viscoelastic wave speed K, = \/M,,imv )/ p, depends on the
frequency o,, and it is complex, because the viscoelastic material modulus M, is
complex. The correspondence principle of Fisher and Leitman says nothing
about what happens to the continuous part of the spectrum for the elastic prob-
lem and it gives no information about completeness of the eigenfunctions in the
viscoelastic case. It should be noted that if (1.1) is regarded as a mapping from
wg to w,, there may be more than one branch, and we have to use additional
physical principles to select the proper branch.

In this paper we apply the correspondence principle {1.1) of Fisher & Leit-
man (1966) to the torsional modes of a viscoelastic rod and to viscoelastic Love
waves in a stratified medium. In the case of Love waves this is actually an exten-
sion of the theory because we remove the restriction that the medium be homo-
geneous. The motivation for studying these two problems is that we can observe
Love waves on seismograms and we can do laboratory experiments on rods. The
theory presented here is needed as background information in the interpreta-
tion of the results. For this reason we find the location of the discrete spectrum
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for four different viscoelastic materials: a Kelvin-Voigt solid (Leitman & Fisher
1973), a Maxwell solid (Leitman & Fisher 1973), a standard linear solid (Leitman
& Fisher 1973), and an Achenbach-Chao model solid (Achenbach & Chao 1962).
We show that for each of these selids Eq. (1.1), regarded as an equation for w,,
requires the introduction of a Riemann surface of at least two sheets. We use
our knowledge of the high- and low-frequency behavior of the spectrum to iden-
tify the principal sheet. The structure of the sheets determines the location of
branch cuts joining them. The corresponding branch points form natural bar-
riers for a perturbation expansion. It seems quite possible that the branch cuts
may give rise to components of continuous spectrum which have no analogue in
the elastic medium. It happens also that for the Achenbach-Chao model solid
for a range of values of the parameter, we must introduce still another branch
cut because it is impossible to find a single sheet with both the proper high- and
low-frequency behavior of the spectrum. A discussion the completeness of the
eigenfunctions and the presence of a continuous spectrum is more easily car-
ried out from an analysis of the solution of a dynamic problem in terms of an
inverse Laplace transform. We delay such a study to a future paper.

Finally, in Section 4 we examine measures of dissipativity of the free vibra-
tions found in Section 3. We find that the process-independent & of 0’'Connell &
Budiansky (1978) is a valid measure of the dissipation only when the dissipation
rate is small relative to the frequency of oscillation.

2 The Correspondence Principle for Simple Free Vibrations

In this section we apply the correspondence principle {(1.1) to obtain the
torsional modes of a viscoelastic rod. We then show that in a stratified viscoelas-
tic medium in which the anelasticity depends on depth in a certain special way,

the correspondence principle {1.1) may be extended to the modes for Love
waves.

The torsional modes for an elastic rod may be determined as given by
Achenbach (1975). Let the rod have radius 7,, and let J;(z), j =0, 1, denote the
Bessel function of the first kind and of order j. Let g be a solution of the fre-
quency equation,

(gro ) olgr,) — 2J4(g7,) = 0. (2.1)

Then in terms of the wave number k (a real number), the density p, and the
elastic modulus M, . the corresponding torsional frequency is given by

we = BVq? + k?
with
B =M/ p.

In terms of the radial position 7, the distance z along the rod, and the time ¢,
the elastic displacement field v, is given by

ve(r.z t) = ;—Jl(q'r)e)cpfi(lcz ~ wet)}.

Accordingly, the viscoelastic torsional modes are obtained by solving (1.1) for
)y, and the associated displacement field v, is

v, (r.z.t) = ;—J1<w>expsi<kz ~ wpt ).

For the viscoelastic Love wave problem in a stratified medium, we have
from Majda ef al. {1985) that



+ [wlo(z) — k*My(z,0,)]u, =0, 0<2z <o, (R2.2)

d dv,
dZ [M'U(z!w'l}) dz

dv, (0)
dz

where k is real, #,(z,w,) is the depth-dependent complex shear modulus, and
p(z) is the density. In eMajda et al. 1985) it was assumed that the complex
shear modulus varies continuously with 2, but the dependence on @ is quite gen-
eral, provided that | M, — M, | is sufficiently small. Here, we permit M, and M, to
be piecewise continuous in 2, but we impose the condition that the complex
shear modulus M,(z,w,) be related to the real shear modulus M, (z) in the spe-
cial way,

=0 and limv,{z) =0,
Z =

My (z.0,) = Me(2)A(w,). (2.3)

where A is an analytic function. Then a correspondence principle for the

stratified Love wave problem may be obtained as follows. We rewrite (2.2) using
(2.3) to yield

d dv, w . ]
-— - =0. 2.4
dz Me(z) dZ + [A(wu) p(z) k MG(Z)JUU 0 ( )
The corresponding elastic Love wave equation is
d dv ,
= M, (2z) d; + [w2o(z) — k*M,(2)Ju, = 0. (2.5)

Upon comparing (2.4) with (2.5), we conclude that if v, is a mode for the elastic
Love wave problem, then it is also a mode for the viscoelastic Love wave prob-
lem, v, =¥, and the frequencies are related by

9 __ o (2.6)
— = wg. .
Alwy)  °

The multiplicative decomposition postulate {2.3) restricts the frequency-
dependent aspect of the material properties to be independent of depth. This
assumption may not be valid for solid earth geophysical applications. It may,
however, be a sufficiently good approximation for regional studies.

We remark that this analysis may easily be extended to the case in which
the density p, for the viscoelastic solid is a constant multiple of the correspond-
ing density p, for the elastic problem. That is, we could just as well let

pu(z) = b,5(2), pe(z) =bep(2),

where p(z) is a normalized, dimensionless density and b, and b, are constants.
This change merely causes the introduction of a scaling factor in (2.6).

The correspondence principle reduces the problem of calculating the
viscoelastic free vibrations to a study of conformal transformations between
complex planes, given by (1.1) for a homogeneous material and by (2.8) for the
stratified Love wave problem. In fact, with the notation

S T iwy,

f(s)=s‘\/r_1_is—_—)—=iwg. (2.7)

Eq. (2.6) takes the form



In (2.7) it is advantageous to continue w, onto the complex plane. Thus, we
regard f(s) as a map from the complex s-plane into the complex w,-plane.
Since the elastic modes wf are strictly real and are presumed known, it is the
inverse transformation f ! that is of interest. In particular, the correspondence
principle amounts to finding the curve I' in the s-plane, which is the image of the
real line in the wy-plane. In subsequent sections we determine T' for a Kelvin-
Voigt solid, a Maxwell solid, a Standard Linear solid and an Achenbach-Chao
model solid. The mapping f ! in each case is multivalued. We shall see that the
branch points of the multivalued map play an important role.

The complex moduli for these model solids are determined from the consti-
tutive equation. Different viscoelastic models are obtained, depending on the
particular constitutive relation, describing the relationship between the stress ¢
and the strain £. In the next section we display the form of the correspondence
principle for four different viscoelastic models.

3 The correspondence principle for four viscoelastic models

For four different viscoelastic models A(—is) we show in this section what
values of s correspond under {2.7) to real elastic modes w,. In this way we
obtain a correspondence principle for Love waves for the Kelvin-Voigt, Maxwell,
and Achenbach-Chao model solids and for the standard linear solid. For each of
these models the principal results are summarized here and the mathematical
details are found in the appendices.

For a Kelvin-Voigt solid (Leitman & Fisher 1973) we have

O’=Mg

‘r,-aa%+ s], (3.1)

where Mg is the equilibrium modulus and 7, is the strain relaxation time. Thus,
by taking a Laplace transform with respect to ¢, we find that for a Kelvin-Voigt
solid A(—is) in (2.7) takes the form

A(—is) =T, + 1. (3.2)
Upon introducing the dimensionless variables

T
p=rs and ¢= T
into (3.2), we obtain for the correspondence relation (2.7)

—2L_ - (3.3)

2vVi+p

Note that if we square (3.3) and clear fractions, we obtain a quadratic equation
inp. Thus, the inverse mapping to (3.3) requires two sheets in the p-plane. Real
values for the elastic modes w, give real values of ¢, and the corresponding
values of p are shown in Fig. 1. Here, the physical branch is drawn as a solid
curve and the extraneous branch is drawn with dashes. ‘

Let us return to the physical variables. For 0<w, <2/ 7, we introduce the
auxiliary variable

= ._ITCG)B
8 = sin [ ) ]

Then, it is shown in Appendix A that the corresponding viscoelastic frequencies
of a Kelvin-Voigt solid lie on the circle,



w, = Ti—(1 — g¥%) (3.4)

]
Similarly, for w, > 2/ 7, we introduce the auxiliary variable
lel
2

and the corresponding viscoelastic frequencies of a Kelvin-Voigt solid lie on the
positive imaginary axis,

¥ = cosh™!

w, = (e + 1). (3.5)
TE

In the paper of Majda ef al. (1985) a perturbation method was used to
obtain a correspondence principle for free vibrations of a Kelvin-Voigt solid.
Their method used a power series in ¢ and was shown to be valid for values of | ¢
sufficiently small. They obtain a Maclaurin series in ¢ for the right-hand side of
(3.4). We show in the appendix that there are branch points at ¢=+1, which act
as natural barriers for the circle of convergence of such an expansion.

The viscoelastic modes of a Kelvin-Voigt solid are analogous to the motions
of a damped oscillator, in that, (3.4) represents an underdamped oscillation and
(3.5) is a overdamped motion. Critical damping occurs at w, =2/ 7, or ¢ =1 (the
branch point). This overdamped motion is expected since the high-frequency
response of a Kelvin-Voigt solid is strictly diffusive. That is, from the point of
view of the governing partial differential equations, the system is parabolic in
the sense of Petrovsky (Gelfand & Shilov 1987, p. 112).

For a Mazwell solid (Leitman & Fisher 1973) the constitutive relation is
da g __, 0
ot ¥ 7, - Mg
where T, is the strain relaxation time. Thus, for a Maxwell solid we have

A(—-1 ):.S—
®E oL (3.6)

In terms of the dimensionless variables
P =T, and ¢ = 27,0,
the correspondence relation (2.7) takes the form
—Rivp(p+1) = ¢. (3.7)

Upon squaring (3.7) we again obtain a quadratic equation in p, so that there are
two branches. The values of p corresponding to real modes w, (and to real ¢)
are shown in Fig. 2. Again, the physical branch is drawn with a solid curve, and
the extraneous branch is drawn with dashes.

In terms of the physical variables it is shown in Appendix B that for
0<w, <1/ (27,) the viscoelastic frequencies of a Maxwell solid are given by

Wy = 2:’_ [1 -V1- (21',:.),)2]. (3.8)
a
Similarly, for we > 1/ (27,) the viscoelastic modes of a Maxwell solid are given by
Wy = 2:_ [7' + V(27qwe )* — 1] (3.9)
[



Let us again show the connection between our result and the perturbation
expansion of Majda et al. (1985) for the Maxwell solid. Their expansion is in
terms of powers on 1/ ¢, so that it amounts to a Laurent expansion of (3.9) about
¢==. It is clear from (3.9) that there are branch points at {(=+1, so that the
domain of convergence of such a series is the set |¢]|>1.

It is interesting to note that the Maxwell solid doesn’'t have the low-
frequency, weakly damped free vibrations of the Kelvin-Voigt solid. In the
Maxwell solid, there are two distinct sets of vibrations, namely, an oscillatory
motion with a fixed decay rate {3.9), separated by a critically damped state from
a strictly decaying motion {3.8).

For a standard linear solid {Leitman & Fisher 1973) the constitutive relation
is

90 , @ _

- My

+ —+
ot T

ot Te

ot z-:_]

with 7, <T.. Thus, for a standard linear solid we have
A(—'I.S) = —_— (310)

We make a change of variables

TG’
P =T¢, ¢=Towy and a = —,
TE

and the correspondence principle (2.7) becomes

—ip\ /pB_I —=¢ (3.11)

Upon squaring (3.11) and clearing fractions, we obtain a cubic equation in p.
Consequently, there are two extraneous branches and one physical branch for
this viscoelastic model solid.

In Figs. 3—6 the values of p corresponding to real elastic modes w, are
shown for different values of the parameter a. Again, the physical branches are
shown as solid curves, and the extraneous branches are drawn with dashes. In
all four of these figures it should be noted that the standard linear solid displays
the low-frequency behavior of the Kelvin-Voigt solid and the high-frequency
behavior of the Maxwell solid. This phenomenon is most striking for a <1/9 as
in Fig. 3. We show in Appendix C that it is only for @ <1/ 9 that the standard
linear solid displays critical damping and purely decaying motion.

We do not give formulas for w, analogous to {3.8) and {3.9) for the standard
linear solid because doing so would require the solution of a cubic equation. We
can, however, determine the low- and high-frequency behavior directly from
(3.11), and this is done in Appendix C. The low-frequency modes transform
according to

wy = V& w, + Eﬂgﬂwg + 0( w,|9) (3.12)

as wg »* 0. The high-frequency modes, on the other hand, transform according to

Wy T +1

12;:1 ] + 0 ‘wle; ) (3.13)

88 Wy > o,



For the standard linear solid Majda ef al. (1985) obtained an expansion in
powers of 1 —a for p as a function of ¢, the inverse to {3.11). They showed that
this series converges uniformly in ¢ for a sufficiently close to 1. We see here
that because of the branch point, the value a=1/9 acts as a natural barrier to
the domain of convergence of such an expansion.

For an Achenbach-Chao model solid (Achenbach & Chao 1962) the constitu-
tive relation is
) 1

_+ —
ot Ta

with 1, <T,. Thus, for an Achenbach-Chao solid a Laplace transform shows that
A(—is) in (2.7) is given by
2

.
. O<a=—"<1. (3.14)
TC

TS +0

A(—is) - TeS+1

In terms of the dimensionless variables
P =TS and ¢ = Tewe/ 2

with the Achenbach-Chao complex modulus {3.14) the correspondence relation

(2.7) takes the form
- 4 +1) _
—’ﬂL)—z(p el (3.15)
with 0<a <1.
The inverse function to (3.15) is the solution of

P2+ (1 -2i¢)p - 2i¢a = 0, (3.18)

and is therefore multi-valued, that is, the Riemann surface of ¢ has two sheets.
Consequently, real elastic modes w, become real values of ¢, which in turn are
mapped by (3.15) onto two branches in the p-plane. Only for values of a such
that 0.5<a <1 is it possible to identify a physical branch in the p-plane. The
situation is illustrated in Figs. 7—9. In Figs. 8 and 9, in which a =0.5 and 0.7, it is
easy to identify a branch in which the low-frequency behavior is analogous te
that of a Kelvin-Voigt solid and the high-frequency behavior is like a Mavwcl!
solid. Note though, that for a=0.5 in Fig. 8 the physical image meets the
extraneous image at the two branch points. For a <0.5 these curves cross the
cut, and it is impossible to obtain the proper high- and low-frequency behavior
on a continuous branch. This behavior is shown in Fig. 7 with a=0.3. It would be
interesting to know the reasons for this phenomenon, but we postpone an inves-

tigation to a later study since it would take us too far afield from the purposes of
this paper.

We conclude this section with a display of ths low- and high-frequency
behavior of the modes in terms of the original physical variables. For w, -» 0 we
have

Wy = awe + ta{l —a)TewE + O] |13), (3.17)

and for w, » = we have

- (1-a)i 1
Wy = g + 2 +0(Iwg!" (3.18)

These formulas are easily obtained from expansions of (3.15) about ¢ =0 and,
respectively, about { =,



4 A discussion of the decay rate

In this section we compare two measures of the dissipativity of the viscoe-
lastic materials discussed in Section 3, namely, the logarithmic decrement of
the oscillatory solutions and the intrinsic ‘‘quality’’ parameter & of 0'Connell
and Budiansky (1978). For a damped periodic oscillation, the logarithmic decre-
ment is a natural measure of the dissipative process, and it is a ratio of two
scales, one being the frequency of oscillation and the other the rate of decay of
the envelope. The logarithmic decrement is then a dimensionless parameter
giving the decay of the motion over one period. Note that the value of the loga-
rithmic decrement depends on the solution of the problem, which in turn
depends on the parameters and on the initial and boundary conditions. In par-
ticular, the process depends on the history of the solution. The gquality factor @
of O'Connell and Budiansky (1978) depends only on the material parameters,
and it is the ratio of the real part to the imaginary part of the complex modulus

1 _ ImM{ws)
Q7 ReH(o) (4.1)

for real ws. We show that 1/ @ is a good approximation to the logarithmic decre-
ment when the logarithmic decrement is sufficiently small.

For the viscoelastic free vibrational modes the logarithmic decrement is

2 ~ Re oy (42)
In terms of the variable p =iT.w, or p =iT,w, plotted in Figs. 1-9, this is

L ojap=_ Rep

2m Imp
Thus, we have
1 _
o InA = tan®, (4.3)

where ¥ denotes the angle between the imaginary axis in the p-plane and the
ray from the origin to the point p in question. For a critically damped or over-

damped motion we have 94 =n/2, giving an infinite dissipation measure which
signifies that the motion is not oscillatory.

We now give the logarithmic decrements for the viscoelastic models studied
in Section 3. It follows from Eq. (A.4) in Appendix A that for the Kelvin-Voigt
solid with 0 <wg <2/ T, we have {4.3) with

-1 wGTE
¥ = sin [ > ] (4.4)

For the Maxwell solid it follows from Egs. (B.1-3) in Appendix B that for
we > 1/ 21, we have

zl—lnA = 1 : (4.5)
‘IT v (27006) -1

For both the standard linear solid and the Achenbach-Chao model solids, there is
no simple formula for the logarithmic decrement. We can, however, obtain its
asymptotic behavior for low and high frequencies. Thus, for the standard linear
solid it follows from (3.12—13) and from the fact that the coefficient of the cubic
term in (3.12) is real that



10

l—a)rew
(#+ O(|we |3) as wg = 0,

1 2Va
_ = 4.6
o M= ) 1 (4.6)
+ = as wg > .
2T | g |
Similarly, for the Achenbach-Chao model solid we see from (3.17—18) that

1 as (1—a)Tow + O(jwe |3) as wg » 0,

2 (1-a) + 1 ~ as w, > (4.7)
Tole ] We |

(Here, we have also used the fact that the coefficient of the cubic term in the
power series (3.17) is real.)

It should be remembered that for the standard linear solid with a<1/9
there exist values of w, for which the corresponding values of p are real, so that
the motion has no oscillatory component and the logarithmic decrement is
infinite. Also, for the Achenbach-Chao solid with a<1/ 2, because of the discon-
tinuity in the viscoelastic spectrum, the logarithmic decrement is discontinu-
ous.

We have seen that for the Kelvin-Voigt solid, the Maxwell solid, and for the
standard linear solid with @ < 1/9, there exist modes for which there is no period
of oscillation with which to compare the decay rate. Thus, to form a dimension-
less parameter measuring the dissipation of the process, we would need to com-
pare the decay rate to some characteristic scale of the problem, such as the
relaxation rate of the viscoelastic material. In any case we need to make use of
the solution which resuits from the dynamic interactions of the material,
geometry, loading process and others. In other words, the dissipation measure
will depend on the characteristic parameters of the problem since dissipative
processes are path dependent.

In the paper of O'Connell and Budiansky (1978) a correspondence principle
was derived between the elastic and the viscoelastic modes. A perturbation
analysis was performed to show that for small attenuation in some sense, if the
complex modulus is analytic in a neighborhood of the real w,-line, then all meas-
ures of dissipation are equivalent to (4.1). One difficulty with this approach is
that it is known from Majda et al. (1985) that the choice of a perturbation
parameter is model dependent. Another difficulty is that when the dissipation is
nct small, it may not be possible to measure dissipation with a @ defined only in
terms of the material properties.

In order to investigate these questions for the viscoelastic solids studied in
Section 3, we find the @ using (4.1) and compare it with InA/ (2m). Our measure
of comparison is the function

R= -ﬁ—ma. (4.8)
For the Kelvin-Voigt solid it follows from (3.2) that
Q- T
E;us. for wg <2/ T, we see from (4.3) that the function K defined by (4.8) is given
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1
= : 4.9
VI (reae/ 27 (4.9)
Thus, K becomes singular for the Kelvin-Voigt solid at the frequency at which

there is critical damping. Similarly, for the Maxwell solid we obtain from (3.8)
that

1_ 1
Q Tﬂwﬂ '

Thus, from (4.5) and (4.8) we have
- 1
V1= 1/ (2740 )
if g > 1/ (27,). We see that for the Maxwell solid the two measures of dissipation
are comparable at high frequencies in the sense that #-»1 as wg 2= but that F

becomes infinite as w; approaches 1/ (27.), the largest frequency for which the
corresponding viscoelastic motion has no oscillatory component.

For the standard linear solid it follows from (3.10) that
1 (1 — a)Tche

0 et o (4.11)

a + (ToWe)

(4.10)

Thus, for wg » 0 we have

1o ooy o,

and upon comparing with (4.8), we obtain
R =+Va (1 + 0(u®).

A similar analysis for w, - = for the standard linear solid shows that

1 1—a 1
—-—= —1+ 0
Q Tgle (QE)]
and that
_ 1
Ii?—1+0(m(a )-

In Fig. 10 we display ® ={@/ n)InA against T,w, for the three values, a =3/ 4,
3/ 8, and 1/ 8. Note that there is no cusp in the graph for a =1/ 8, only a region
of high curvature. Note also that by (4.11) the minimurn value of @ for fixed a is

2va
Qn = T,
so that for @ =3/ 4 we have &, =4V3~6.928. For this value of & the maximum
value of | R —1| occurs at w, =0, where & =+Va ~0.866.
Finally, for the Achenbach-Chao model solid we obtain from (3.14) that
1 _ _2(1— o)E(® + a)
@ (£ +a)f—(1-a)e
with £ = 1,0,. The asymptotic behavior for £ » 0 is
L= Bloat, oy,

and
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R = o+ O(8).
It is easy to see that the high-frequency behavior, £ - =, is given by

1_20-«a 1
0 7 +0[€2]

- 1
R_1+O[€ ,

It should be remembered, though, that for @ <1/ 2 it is impossible to obtain the
proper high- and low-frequency behavior without introducing a branch cut. In
Fig. 11 we display graphs of K as a function of 7,0, for a =0.9, 0.7, and 0.5. For
o= 0.5 the curve has an angular bend arising from the right angle in Fig. 8.

and

We have found that for viscoelastic free vibrations the logarithmic decre-
ment is asymptotic to 1/(2@) (i.e., R & 1) in the regimes in which the decay rate
is small relative to the frequency of oscillation. This occurs for the Kelvin-Voigt
solid at low frequencies, and the deviation at any particular frequency may be
calculated from (4.9). We also have R~ 1 for the Maxwell solid at high frequen-
cies, and the error may be obtained from (4.10). For the standard linear solid
we have more choice as to the limits we wish to take. Thus, for wg; -+« we have
R -1 uniformly in a, for w, »0 we have K/ Va -1 uniformly in @, and from Majda
et al. (1985) we have that F -1 uniformly in & as a 1. For the Achenbach-Chao
model solid we have the same three choices of parameter ranges: F-1 uni-
formly in a as wg +=, K/ a-1 uniformly in a as we »0, and K -1 uniformly in w, as
a-~»1. For other values of the parameters, dispersion manifests itself in modify-
ing the period of oscillation, giving rise in some circumstances to critical damp-
ing and to overdamping. Under these conditions the process-independent @ is
not an adequate characterization of the dissipative process.

From our examples we conclude that the conjecture of 0'Connell & Budian-
sky (1978) that dissipation may be measured by a process-independent @ is
valid only when the dissipation rate is small relative to the frequency of oscilla-
tion, or alternatively, the requirement may be phrased as saying that the loga-
rithmic decrement must be small. We have also given some idea of the range of
validity of the conjecture for the viscoelastic models discussed here.
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Appendix A Kelvin-Yoigt solid

In this appendix we give the details of the analysis of (3.3), and we show why
the two branches of Fig. 1 behave as they do. It is clear by inspection that
P=-1 and p == are branch points of (3.3). We have to join these two branch
points with a cut, and we shall see that the cut is to be taken from p=-1 to
p == along the negative real axis. The question which is more interest to us,
however, is the location of singularities in the ¢-plane, because our task is the
determination of the location of the image in the p-plane of the real axis in the
¢-plane. To solve that problem, we may proceed in either of two ways: by analyz-
ing (3.3) directly, or by looking for simpler intermediate transformations. We
shall do it both ways, starting with a chain of intermediate transformations.

An inspection of (3.3) suggests the following sequence of transformations.
With

p =z%-1 (A1)
Eg. (3.3) becomes the well-known Joukowsky transformation {Bieberbach 1953)
1 1 .
oz - )= (A.2)

This transformation is discussed in detail in Appendix E. The map (A.2) may be

inverted,
z =i+ \/1—?. (A.3)

We see that there are branch points at ¢ = £ 1. Note that the inverse function to
(3.3) is a composition of (A.3) with (A.1) and that the mapping (A.1) preserves
the singularities in {A.3) and adds no new ones. Thus, we need concern ourselves
only with the branch points ¢ = + 1.

We have to use physical principles to determine the location of the cut and
to specify the sheet for the mapping (A.3). For ¢ on the interval —1<¢ <1, the
form of (A.3) suggests the substitution ¢=sind, -n/2<¥<n/2. The two
corresponding values of z and p are

z =e', p=e¥® -1, (A.4)
z=—-e % p=e® 1 (A.5)

In both cases p goes around the circle of radius 1 with center at —1, as ¥ goes
from —m/ 2 to /2, but the direction is different. In order for (3.3) to be a per-
turbation of the elastic case p=i{ for values of ¢~0, we must choose the
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counterclockwise branch (A.4). In Fig. 1 the curve (A.4) is shown as a solid circle
and (A.5) as a dashed circle.

For ¢ on the real axis and ¢ > 1, the form of (A.3) suggests the substitution
¢ =coshd, 0 <4 <=, which gives

z:ie", p=—]—e%. (A-6>

z=ie® p=-1-e%, (A7)

For a Kelvin-Voigt solid the dynamic equation together with (3.1) is of parabolic
type, so that Rep +» —= as ¢ -» = through real values. Consequently, we must
choose the branch (A.6). This implies that as ¢ passes ¢ =1 in the increasing
direction on the real axis, the image in the p-plane makes a 90° right turn. Con-
sequently, the cut leaving the branch point ¢ =1 must lie in the upper halfplane.
In fact, the entire cut from ¢=-1 to ¢ =1 must lie in the upper halfplane, for
otherwise, the locus of the viscoelastic modes would have a discontinuity.

We still have to determine the image of the part of the real ¢ axis from
Re¢=—= to {=—1. An analysis similar to that given for {(A.6) and (A.7) shows
that if we set { = —cosh®, 0<¥ <, in {A.3), then the proper branch is

z=—-1e% p=-1-e% (A.8)

The complete proper image in the p-plane of the real axis in the ¢-plane is
shown as the solid curve in Fig. 1. The extraneous branch (A.7) is drawn with
dashes. We conclude by noting that Fig. 1 shows that the cut in the p-plane for
the square root in (3.3) is to be taken from p = —1 to p == along the negative
real axis.

The other approach is to get as much information as possible directly from
(3.3). We begin by differentiating (3.3),

d¢ _ —i{p+2)
dp  4(p+1)¥2°

The mapping (3.3) fails to be conformal at any point where d¢/dp is zero or
does not exist. It is clear that these are the points p =—1, p =—2, and p =0,
Let us begin by examining (3.3) for p near — 1. It is clear that p = —1 maps onto

¢ =, and it follows from (3.3) that the Laurent expansion for p about ¢ =« is of
the form

(A.9)

p=-1—-—F+0(—F) A.10
4 |¢]* (8.10)
Consequently, for ¢ = Re'® with F large,
) g Rt
N — —_—_—
P AR?
so that an angle at p =~ 1 is twice the size of the corresponding angle at {=w.

This is the reason for the U-turn at p = —1 in the dashed curve in Fig. 1.

At p =-2 it is clear from (A.9) that dp/d¢ fails to exist, and the transfor-
mation inverse to (3.3) has singularities at the image points ¢=+1. In order to
determine the type of singularity at, say, ¢ =1, we make a Taylor expansion of
(A.9) about p = —2, taking the branch for which Vp+1 =i atp =-2,

i{-: 1_ + + +2 12
&= @)+ o+l
Integration of this approximation shows that
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E=1+ é—(p+2)2 + 0(|p+2|%)

for p in a neighborhood of —2. Thus, for ¢ =1 +re*? with 7 small, we have
p=-2++VBre*¥?+ 0(r).

This shows that an angle at ¢ =1 is mapped into an angle at p =—2 of half the
size, thus explaining the right angles at p = —2 in Fig. 1. A similar analysis could
be performed to show that there is another square-root singularity at ¢ = —1.

It remains to examine the case of p » . It follows directly from (3.3) that
p =—4L + 0(1), as ¢ - o, (A.11)

and we see again that an angle at { == is doubled in size at p ==, this time on
the other sheet.

We have seen that a simple analysis explains the sharp bends in the curves
in Fig. 1, thus giving an understanding of the local behavior near critical points.
To get the curves in Fig. 1 away from the critical points, we had to look at the
global picture through the mappings (A.1) and (A.3). These ideas are important
to our later discussion of the standard linear solid, because for it we can’t con-
struct a simple chain of transformations, and we use the computer to fill in the
image curves between the critical points.

Appendix B Maxwell Solid

In this section we analyze the mapping (3.7) to find out which values of p
arise from real values of ¢, thus determining the nature of the correspondence
principle for a Maxwell solid.

We see immediately that there are branch points at p=0 and p=-1.
Again, we may either analyze (3.7) directly or construct a sequence of simpler
transformations. One such sequence is as follows. Let

= —Rivw,

1
— g2 _ L
w £ 1

and

1
= + —
E=p >

Since we are interested in the inverse function to {(3.7), we invert these transfor-
mations and analyze

w = - S;i. (B.1)
£ = '\/’qu‘ (B.2)
P=f- 5 (B.3)

It is clear that the mapping (B.1) has no singularities. The mapping {B.2)
has a branch point at w =—1/4, which is the image of the points ¢{=+1. The
mapping (B.3) is just a translation and has no singularities. Thus, the only singu-
larities for the inverse transformation to (3.7) are branch points of square-root
typeat {=zx 1
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Let us now determine the image of the real line in the ¢-plane. It is clear
that the transformation (B.1) maps the real axis of the ¢-plane onto the negative
real axis of the w-plane. For w real and —1/4<w <0, we see from (B.2) and
(B.3) that £ and p are real and that, depending on the branch of the square root,
either

0<t¢=<

<p <0, (B.4)

Nlr—A
Nlr—t

or

1 1
5=£=0, —1=<p=- > (B.5)
These are the two images of the real segment —1=<¢=<1. For w real with
w<—1/4, we see that £ is purely imaginary, with the two branches complex
conjugate of each other. Consequently, the part of the real ¢ axis with |¢]| =1
maps onto the line Rep =—1/2. The choice of the branch is determined as fol-
lows. Let us start with ¢ real and ¢~ . Then in order for high-frequency modes
in the Maxwell solid to behave like damped high-frequency elastic modes, we
must have p ¥i¢ as ¢ > =. Thus, the segment —= <¢ <—1, ¢ real, is mapped onto
the part of the line Rep = ~1/2 which lies in the third quadrant. Likewise, the
segment 1<{ <=, ¢ real, is mapped onto the part of the line Rep = —1/2 which
lies in the second quadrant. Since there must be no damping in the zero-
frequency limit, the branch (B.5) is extraneous, and we must choose the branch
(B.4). The full image is shown in Fig. 2. Just as for the Kelvin-Voigt solid, we see
by the angles at the corners that the cut from ¢= -1 to {=1 must lie in the
upper half of the {-plane.

As we did for the Kelvin-Voigt solid, we can get a great deal of qualitative
information about the inverse to (3.7) by analyzing the behavior of (3.7) near
critical points. We begin by differentiating (3.7) to get

a¢ _ —i(Rp+1)

dp Vp(p+1)
Thus, we see that d{/dp=0atp=-1/2, and d{/dp=~atp=0orp=-—1. The
mapping (3.7) is regular at p ==. Let us examine first the behavior near
p =—1/2, which by (3.7) corresponds to ¢ =+ 1. Just as for the Kelvin-Voigt
solid, we expand d¢{/ dp in a Taylor series about the critical point,

a - rLyvop+Lie
ap - Hp )+ O0(p + 10, (B.6)
Upon integrating (B.6), we see that for p = -1/ 2 + re*?, we have
¢ £1=—2r%*? + 0(r3),

so that angles at the branch points ¢ = + 1 are mapped into angles of half the size
at p = —1/2. Similarly, expansions of (3.7) about p =0 and p = —1 show that an
angle at ¢ =0 is mapped into an angle twice the size at p =0 oratp = —1.

Appendix C Standard Linear Solid

In Figs. 3-8 for four values of a we show the three images in the p-plane of
the real axis in the ¢-plane under the transformation (3.11). The principal
branch is shown as a solid curve, a choice dictated by the fact that for low fre-
quencies (¢ ~0), a standard linear solid behaves like a Kelvin-Voigt solid, and for
high frequencies (¢ ® =), it behaves like a Maxwell solid. This appendix is devoted
to an explanation of these figures based on local information.

Let us begin with an analysis of the low-frequency behavior, with a
verification of (3.12). For the physical branch of the square root in (3.11),
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application of the binomial expansion shows that the Maclaurin series of ¢ as a
function of p is of the form
¢==2 |, _(1-ajp
Va

1- 3
—2 | 4 o(|p|?)

as p » 0. Thus, the inverse function has a Maclaurin series of the form

SR+ 001819 (€.1)

as {»0. We now obtain (3.12) upon transforming to physical variables. Note
that if we take the other branch of the square root in (3.11), the coefficients in
(C.1) are replaced by their complex conjugates. Thus, two branches in Figs. 3—6
lie on top of each other but have the opposite orientation.

p:i(‘\/a_

It is clear that (3.11) has branch points at p =—1 and p =—a. (Note that
0<a <1 by assumption.) We take the branch cut to be the interval from p =—1
to p = —a, ensuring that the curves in Figs. 3—6 never cross the cut.

Let us now examine the high-frequency behavior. It follows directly from
(3.11) that p == is a regular point. In fact, we find that as ¢ » = one branch of
the inverse to (3.11) has Laurent expansion of the form

2, o iél ). (C.2)

. 1=
p =i >

This explains the vertical asymptotes in Figs. 3—6. Eq. (3.13) is just (C.2) rewrit-
ten in terms of the physical variables.

Let us now find the points at which the mapping (3.11) is not conformal.
Upon differentiating (3.11), we find that

d¢ _ —i(2p* +(3a + 1)p +2a)
dp (p + DVV3p + a)¥®
It is clear that d¢/dp =0 at the zeros p, and p; of 2p% +(3a + 1)p +2a and that
d{/ dp =~ at the points p = —a and p =— 1. An expansion of (3.11) about p =—1
shows that angles at (=0 are doubled at p =-1. Similarly, an expansion of
(3.11) about p = —a shows that on this branch angles at ¢ == are doubled at
p=—a.
Each of the points

(C.3)

2 i— 1—a){1-9a). (C.4)
+
Pz = — KBGf‘tlL_ i—\/il—aiil—QaL (C.5)

is the image of two branch points in the {-plane. The reason for the multiplicity
is that in (3.11) there are two values of ¢ for every nonzero finite value of p. In
Figs. 3—8 the values of p, and pp are marked with x's.

We consider three cases, depending on whether the p; are real and distinct,
equal (and real), or complex. We begin with a =1/ 9 because we want the sheet
structure in the {-plane to depend continuously on a. For @ =1/9 the numera-
tor of (C.3) has a zero of second order at p =p, =pgz. That is, the Taylor series
for d{/ dp about p =p, is of the form

e, s L N PRPRD
dp  (p, + 1)V3(p, + a)¥? o
Consequently, the Taylor series for ¢{p) about p =p,; has the form
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¢=co+eg(p —p)° + O(lp - P19
with c3#0. In fact, it is easy to see from (3.11) that cg=+ 1/V3. Thus, for the
inverse function with a = 1/ 9 each of the branch points ¢=+ 1/ V3 is a cube-root
singularity. In order to have consistency with a Kelvin-Voigt solid at low frequen-
cies and a Maxwell solid at high frequencies, we see that the cut from ¢(=—-1/+V3
to ¢ =1/V3 must lie above the real axis. The structure of the three sheets in
the {-plane is shown in Fig. 12 in a cross section taken along the imaginary axis.

For a =1/9 the three images in the p-plane of the real axis in the ¢-plane
may be explained as follows (see Fig. 4). As Re ¢ starts from —w, the principal
branch starts up the solid path (C.2) in the third quadrant. One extraneous
branch is the complex conjugate of this one, and it corresponds to the dashed
line on sheet 3 in Fig. 12. (If we start on sheet 1 and go around the branch point
in the clockwise direction, we cross the cut from above, winding up on sheet 3.
The corresponding angle swept out in the p-plane is —120°.) The other extrane-
ous branch starts at p =—ga, and it is the image of the dashed line on sheet 2 in
Fig. 12. As ¢ passes the branch point ¢{ = —1/ V3, for each of the branches p exe-
cutes a B0° right turn (because of the cube root). For the principal branch the
path goes around the loop in the counterclockwise direction. At ¢ =0 the three
images are p =0, 0, —1. At the branch point ¢ =1/ V3 the paths make another
80° turn to the right. The principal path connects with {C.2) as ¢ »=. In order
to draw Fig. 4, we used this local analysis to determine the behavior at p =<, 0,
P1. —o, and — 1, and we used Newton's method and continuation in ¢ to find how
the local pieces join together.

Let us now examine the complex case: 1/9<a <1. In that case the values
of p; and pz in (C.4) and (C.5) are complex conjugates of each other, and it fol-
lows from (3.11) that the corresponding branch points in the ¢-plane are located
at the vertices of a rectangle with center at the origin and sides parallel to the
real and imaginary axes. See Fig. 13. The main step involves showing that

Pitl _ —w _ eie
pl+a ’uJ. '

where

w =V{1-a) +iV{9a-1) = re'?,

and w" denotes the complex conjugate of w. Similarly, we have

p2+1 _ —’UJ. _ __2_21;1;
pata w '

Thus, with p =pe'® in (C.4), the four branch points are ¢=tpe*i#+?) This
analysis shows that for 1/9<a <1 the real axis in the ¢-plane does not hit the
branch points. Consequently, the only local analysis we have to take into
account is that involving ¢ »0 and ¢ -+ =, and this is the same as for a =1/9. In
Figs. 5 and 8 we use Newton's method and continuation in ¢ to join these local
pieces to form the global images of the real axis in the {-plane.

Note that between Figs. 4 and 5 the principal branch varies continuously
with a, while the other branches are discontinuous. This may be accomplished
with a continuous sheet structure if the cuts for 1/9<a <1 are taken as in Fig.
13 with the cross section of the sheets on the imaginary axis as shown in Fig. 14.
In Figs. 12 and 14 the principal branch of the real axis is marked with a solid
line.

It remains to consider 0<a <1/9, and we see from (C.4) and (C.5) that p,
and p; are real and that —1<pz<p,<-—a. Consequently, by (3.11) the
corresponding values {; and ¢ are also real, and the two values of ¢ for each p;
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are negatives of each other. We join each of these pairs of branch points with a
cut just above the real axis. It is easy to see that each of these branch points is
of square-root type, explaining the 90° turns in Fig. 3. Finally, in order for the
sheet structure to be continuous as a +1/9 and consistent with Fig. 3, we see
that for |Re¢| <¢; the sheets are as in Fig. 12, and for ¢; <|Re¢| <{z sheets 1
and 3 cross just above the real axis, while sheet 2 is undisturbed.

From an inspection of Figs. 4—86 we might expect that I" lies in a strip in the
p-plane. This is indeed the case. A precise statement of this result is given in
the following theorem.

THEOREM 1. The viscoelostic freé vibrations of a standard linear solid with
0<a <1 lie in the strip

fp |~ 1;“<Rep£0i.

and for p # 0 they are always dissipalive, i. e., Rep <0.

Remarks. The dissipative nature of the viscoelastic modes is to be
expected from the dissipativity principle of Gurtin & Herrera (1965). Note also
that the edges of the strip are just what is prescribed by the behavior (C.2) as
¢ » o and by the fact that p =0at {=0.

Proof. We show by elementary arguments that if p =z +iy with y # 0 such
that (3.11) is satisfied for real ¢, then —(1—a)/2<zx <0. This is equivalent to
Theorem 1. We begin by transforming the problem to a question of determining
the location of the real zeros of a cubic polynomial in z with coeflicients depend-
ingona and y.

If we square both sides of (3.11) and multiply by —(p +a)(p*+a), we obtain
the relation

pip + 1)(p* +a) =~ |p + a|¥? (C.8)

where p’=z —iy. For ¢ real the right-hand side of {C.6) is real. Thus, upon set-
ting the imaginary part of the left-hand side of (C.6) equal to zero with
p =z +1iy, we find that

(222 + (1 +3a)z? + 2(a + y¥)z + (1 - a)y®)y = 0. (C.7)

Note that the right-hand side of (C.8) is real when ¢ is pure imaginary, so that
(C.7) also contains the images of the imaginary axis in the ¢-plane. In particu-
lar, this includes the part of the real axis ¥y =0 withz > —a or z <—1, as is easily
seen from (3.11). In any case, the trivial solution ¥ =0 is not of interest to us.
Therefore, we are led to the question of locating the zeros of the polynomial in z,

f(z) =223+ (1 +3a)z? + 2(a + y?)z + (1 —a)y? (C.B)

Since 0<a <1, it is clear from (C.8) that f{z)>0 if z>0 and y #0. Thus, we
have shown that the solutions of {3.11) for real ¢ lie in the halfplane Rep <0 with
only the point p =0 lying on the boundary.

In order to show that Rep is bounded from below by —(1—a)/2 for p on I,
let us begin by performing a combined shift and reflection in {C.8). Upon setting
z=—-z—(1-a)/2and
l-o

=2,

glz)=-f(-2-
we find that

g(z)=2z(z — 30'2—_1-)2 + 2y*z + a®(1 —a).

Thus, it is clear that g{z)>0if 220 and 0<a < 1. In other words, we have shown
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that f(z)<0if z<—(1—-a)/2. That is, the zeros of f (z) are restricted to lie in
the interval —(1-a)/2<z<0, and the curve I' lies in the strip
—(1~a)/2<Rep <0. This completes the proof of the theorem.

Appendix D Achenbach-Chao Model Solid
In this appendix we analyze {3.15) and explain Figs. 6—9. In order to under-

stand the mapping (3.15) from a global point of view, we write it as a sequence of
simpler mappings. In fact, (3.15) is equivalent to the sequence:

_ _ptua
z_\/ail—ai ' (D-1)
¢ = é—(z - i—-). (D.2)

¢t=—i(Va{l -}t —a + %—). (D.3)

Eq. (D.1) consists of a translation and a change of scale. Eq. (D.3) performs a
scale change, a translation, and a rotation. Eg. (D.2) is the well-known Joukow-
sky transformation. It appears in the discussion of the Kelvin-Voigt solid and is
discussed in Appendix E. Thus, the essential feature of (3.15) is the Joukowsky
transformation, describing ideal flow past a circular cylinder. The break in the
physical branch for o =0.3 illustrates the situation for a <0.5, and it may be
explained as follows. The inverse mapping to {(D.2) is

z=¢+VE+1,

which has branch points at § =+1i. Consequently, by (D.3) the branch points in
the {-plane are located at

¢{=+vVa{l —a) + (a - é—)t (D.4)

Thus, we see that the branch points cross the real axis of the ¢-plane at a =1/2,
which causes the behavior for ® < 1/ 2 to be different from that for a>1/2.

In order to understand this phenomenon, let us perform a local analysis,
starting with an examination of the high-frequency (¢ -»«) and low-frequency
(¢-0) limits. It is clear from (3.15) that the two images of { == are p == and
P =—a. In fact, a slightly more detailed analysis of (3.15) shows that as ¢ >
these two branches have Laurent expansions of the form

1 .

p =2i¢ —(1-0)+ O(;) (D.5)
and
p=—a+t L“(lz(‘_“)_+ O(!tllz)' (D.6)

It is clear that the branch (D.5) is a perturbation of the elastic case p =2i¢,
while (D.8) is not.

From (3.15) it is evident that the images of ¢ =0 are p =0 and p = —1, but
only the branch p =0 makes sense physically. Thus, it would seem as if all we
have to do is to extend the branch (D.5) until it goes through p =0 at {=0. This
turns out to be possible only if a=>1/2.

It is true that we have already found in (D.4) the locations of the branch

points, but alternatively, we could also do this by a local analysis. Upon
differentiating (3.15), we see that
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d¢ _ pP+2ap +a

dp ~ 2i(p + a)?
so that d¢/ dp =0 and dp/ d¢ fails to exist when p takes on the values

P1=—a+ivVa(l - a),
Pz=—a—iva(l - a).

The images of these points are the points {D.4),

&=Vl —a) + (a - é—)i (D.7)

and
&=—Val—a) + (a - é—)v;, (D.8)

and it is easy to show that they are branch points of square-root type. We see
from (D.7) and (D.8) that ¢; and ¢; lie on the circle

y=1i& ¢l =172

and that they lie in the upper half of the ¢-plane if 1/2<a <1 and in the lower
half if 0<a<1/2. This implies that for aa> 1/ 2 if we connect the branch points
by a cut in the upper half plane and if the location of the cut depends continu-
ously on a, then in every neighborhood of a=1/2 the image in the p-plane of
the real axis in the ¢-plane must have some sort of discontinuity. Either the cut
lies completely in the lower half plane for a < 1/2 resulting in violation of the
(D.5) as ¢ »= or of p =0 at {=0, or the cut crosses the real ¢ axis, resulting in
breaks in the image curve but maintaining (D.5) as ¢ >~ and p =0 at ¢(=0. In
Fig. 7 for a =0.3 we have chosen the second option, arbitrarily taking the cut to
be the lines Re¢=+Va{l —a), Im¢=a—1/2. This behavior implies that for
o< 1/2 it is not possible to represent the solution of a dynamic viscoelastic wave
problem in terms of modes alone; the contribution of contour integrals around
the branch points must also be included.

Appendix E The Joukowsky Transformation

For the sake of completeness we include here a brief discussion of the
Joukowsky transformation

1 1
w =g (z " ) (E.1)
which we met in our discussion of the Achenbach-Chao model solid in Eq. (D.2)
and of the Kelvin-Voigt solid in Eq. (A.2). (Actually, Eq. (A.2) contains an addi-
tional factor —i which merely performs a rotation by —90°.) Similar analysis of
the Joukowsky transformation may be found in classical references on confor-
mal mapping, such as the book by Bieberbach {1953).

We begin by examining the images in the w-plane of circles z =7e*® in the
z -plane parameterized by the radius 7. We see from a direct substitution that

—_ 1_ _ _1_ = 1_ l_ 1
Rew = 5 (r - Jeos®d, Imw 5 (r + - )sind. (E.2)
Thus, the unit circle z =e*? is collapsed onto the segment from w = —i to w =1.

In our analysis of the Kelvin-Voigt and Achenbach-Chao solids we actually used
the mapping inverse to (E.1). It is for this reason that a circle appears as the
image of a line segment in Figs. 1 and 8.

For values of 7 different from 1 we see from (E.2) that the image in the w-
plane is an ellipse centered on the origin with major axis of length (r +1/7)/2
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and on the imaginary axis and with minor axis of length (r —1/7)/2. Thus, each
of these ellipses has its foci at w = +1, and the segment we obtained when 7 =1
is merely a degenerate ellipse of this family. Note that for 7 > 1 the circles in
the 2 -plane of radius 7 and 1/7 map onto the same ellipse in the w-plane.

In our discussion of the Achenbach-Chao model solid we were interested not
in the inverse images of ellipses, but of lines, Re w =constant. The images in the
z-plane of several such lines are shown in Fig. 15. They represent the stream-
lines of irrotational flow past a circular cylinder, and that is the reason for the
classical interest in the mapping. Note in Fig. 15 the special role played by the
circle |z | =1, separating the external flow field from the internal flow field. We
have seen that the inverse transformation to (E.1) is double valued. This is
shown in Fig. 15 by the fact that each line, Re w = constant # 0, is mapped onto
an exterior streamline and an interior streamline. In Fig. 15 one of these
images is drawn as a solid curve and the other with dashes. We have chosen
rather unusual cuts {(Im w =+ 1, Re w <0) in keeping with the cuts introduced in
Appendix D. Thus, the curves shown in Figs. 7—9 are simply individual curves
from Fig. 15 with appropriate translation and scaling.
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List of Figures.

1. Kelvin-Voigt solid.

2. Maxwell solid.

3. Standard linear solid, a =0.08.
4. Standard linear solid, @ =0.111.
5. Standard linear solid, a = 0.125.
6. Standard linear solid, a =0.75.
7. Achenbach-Chao solid, o =0.3.
8. Achenbach-Chao solid, a =0.5.
9. Achenbach-Chao solid, a=0.7.
10. K for the standard linear solid.
11. K for the Achenbach-Chao solid.

12
13
14
15

. Cross section of the sheets, a =1/ 9.

. Location of the cuts, 1/9<a <1.

. Cross section of the sheets, 1/9<a <1.
. Joukowsky streamlines.
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‘Standard Linear Solid
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" Standard Linear Solid
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Standard Linear Solid
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Streamlines
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